OmniMapper: A Modular Multimodal Mapping Framework

Abstract

Simultaneous Localization and Mapping (SLAM) is not a problem with a one-size-fits-all solution. The literature includes a variety of SLAM approaches targeted at different environments, platforms, sensors, CPU budgets, and applications. We propose OmniMapper, a modular multimodal framework and toolbox for solving SLAM problems. The system can be used to generate pose graphs, do feature-based SLAM, and also includes tools for semantic mapping. Multiple measurement types from different sensors can be combined for multimodal mapping. It is open with standard interfaces to allow easy integration of new sensors and feature types. We present a detailed description of the mapping approach, as well as a software framework that implements this, and present detailed descriptions of its applications to several domains including mapping with a service robot in an indoor environment, large- scale mapping on a PackBot, and mapping with a handheld RGBD camera.
Continue reading

Planar Surface SLAM with 3D and 2D Sensors

Abstract

We present an extension to our feature based mapping technique that allows for the use of planar surfaces such as walls, tables, counters, or other planar surfaces as landmarks in our mapper. These planar surfaces are measured both in 3D point clouds, as well as 2D laser scans. These sensing modalities compliment each other well, as they differ significantly in their measurable fields of view and maximum ranges. We present experiments to evaluate the contributions of each type of sensor.
Continue reading